

SGMA and Groundwater Management Case Studies

April 4, 2016

Presentation Objectives
 Part 1: Provide an introduction to SGMA Part 2: Provide the scientific/technical background Background on groundwater and groundwater management in California SGMA Groundwater Sustainability Plans Case study for groundwater management in the desert at Hay Ranch. Rose Valley
 Part 3: Provide the policy and legal background California water history leading up to SGMA SGMA milestones and process Case study for Antelope Valley Adjudication Part 4: Provide perspectives and strategies as the regulation unfolds
SGMA and Groundwater Management • 2016 AEP Conference

/hy?
 Prior to SGMA, Groundwater Largely Unregulated Draught Lowering of water tables Drying of wells Land subsidence Increased energy costs from pumping Reduced base flow in streams and rivers SGMA → Meet Long-term Water Needs of State Many Involved Entities
Local Government
NGOs Groundwater Users
Facilitators State Government
Public Research Institutions
Policy Centers
SGMA and Groundwater Management • 2016 AEP Conference

The Elements of SGMA

Groundwater Sustainability Agencies (GSAs)

- Local agency to implement the Act in one or more groundwater basins or subbasins
- 149 entities have submitted to be a GSA as of Thursday

m 10 • entries			Seatch		
G SA Name	Basin Nette	Basin Number 8	County(s) the GSA is Located	Date Notice Posted	Status or 90- day Period
Paterson Irrigation District	Delta-Mendota	5-22.07	Stanistaus	03/28/2016	06/26/2016
Tri-County Water Authority	Tule	5-22.13	Tulare	03/18/2016	06/16/2010
Byena Vista Water Storage Diatrict	Kern County	5-22.14	Ken	03/10/2016	06/08/2016
North San Joaquin Water Conservation District	Eastern San Joaquin	5-22.01	San Joaquin	03/01/2016	Overtap
North San Joaquin Water Conservation District	Cosumnes	5-22.16	San Joaquin	03/01/2016	Overtap
West Stanislaus Impation District	Tracy	5-22.15	Ban Joaquin	02/25/2016	Overlap
West Stanislaus Impation District	Delta-Mendota	5-22.07	Stanislaus	62/25/2016	05252016
City of Tracy	Tracy	5-22.15	San Joaquin	02/25/2016	Overlap
West Side Impation District	Tracy	5-22.15	San Joaquin	02/25/2016	Overtap
ChyofLodi	Eastern San Joaquin	5-22.01	San Joaquin	62/09/2018	Overlap
GSA Name	Basin Name	Basin Number	County(s) the GSA m Located	Date Notice Posted	Status or 90- day Period

The Elements of SGMA

Groundwater Sustainability Plans (GSPs)

- To be developed by each GSA
- Must provide opportunities for public participation
- GSP deadlines either January 2020 or January 2022
- February 2016 Draft regulations for steps for preparation of GSPs

From venturariver.org

Issues
 Major Issues Removing 23 adjudicated basins, ~40 percent of the basins requiring GSPs lack adequate groundwater monitoring networks, as defined by the DWR CASGEM program Connected basins – particularly in the Central Valley How to deal with complexities and responsibilities GSA may have no authority over recharge area Central Valley recharged from foothils GSAs must develop numeric models in the face of uncertainty Coordinating modeling decisions and agency buy-off
SGMA and Groundwater Management • 2016 AFP Conference

Table 3.2-3: Rose Valley Con	ceptual Groundw	ater Budget		
Budget Components	2006	Model	2007	Model
	Flow Rate, acre- ft/yr	Simulation Package used in Model	Flow Rate, acre- ft/yr	Simulation Package used in Model
Groundwater Inflow				
Mountain Front Recharge from west	4,191	Well	4,194	Well
Groundwater Underflow from the North	788	Constant Head	898	Constant Head
Total Inflow	4,979		5,092	
Groundwater Outflow				
Existing extraction wells	0		50	Well
Groundwater underflow to Indian Wells Valley exiting from southeastern Rose Valley	2,050	General Head	842	General Head
Evaporation from Little Lake and Evapotranspiration from adjacent Palustrine wetland plants	500	Evapotranspiration	700	Evapotranspiration
Phreatophyte plant transpiration on Little Lake Ranch property south of Little Lake (outside model grid)	0		500	
Groundwater Discharge through Little Lake Gap to Indian Wells Valley	2,429	Drain	3,000	General Head
Total Outflow	4 979		5 092	

Establish Measurable Criteria

Plan Criteria

- Can't withdraw without impacting Rose Valley
- Determined a >0.3 foot change in lake levels would result in significant effects
- No more than 10% decrease in lake volume which falls within the natural variation seen – water is managed at the lake
- Based on wetland plant biology and morphology of lake
- Root zone inundation
- Maintenance of riparian zone width
- Monitoring Program
 - Existing and new wells, defined trigger points to stop or curtail pumping before effects to LL

SGMA and Groundwater Management • 2016 AEP Conference

Projest Hapsod Tinse, yearo	Dunmovin Area Well	Punio e Mire Wei	Hay Rench Choervatio n Well	Coes Ransh North Well	Coes Junedon #1 Well	Kavy G-86 Viel	Navy Lego Well	HII Cinder Ased Wei	Hovy 18-21 Wei	Laks Ranot North Well	Korth Doek wall (nota monitoring point)
Disiance from Hay Ranch ((if)	<u>8.080</u>	8.100	1.302	9.700	10.000	2 <u>0.00</u> Q	27.300	<u>\$2.000</u>	38.000	42.605	48,600
1 yr	1.1	5.3	11.5	1.4	1.2	≪0.2	≪0.2	0.2	≪0.2	<02	≪0.2
2 yr	2.3	8	6.2	2.4	21	0.3	0.3	0.4	-0.2	⊲0.2	≪0.2
3 yr	2.7	4.8	4.8	2.5	22	0.5	0,4	0.4	-0.2	0.2	≪0.2
4 yr	2.6	4.1	4	2.5	2.2	0.6	0.6	0.5	62	0.3	0.2
6 yr	2.7	36	3.5	2.4	2.2	0.7	0.7	0.6	63	0.3	0.2
Heshnum Dravadovan (leet)	23	72	19	2.8	23	1.1	1.1	0.7	1	0.4	0.9
Tinse eince Project Started (yoare)	4	1.3	1.2	3	3.5	14.8	18	12	22	13	12.8

Hydrologic Mitigation and Monitoring Program

Adaptive Management

- Data collected from May 2009 to present
- Model recalibrated in 2011
- Trigger levels readjusted in 2014 for new max pumping rate allowed Hay Ranch Project Groundwater Baselines and Trigger Levels February 2016

Well ID	Monitoring Point	Baseline GWE ¹ (feet ansi)	Recent Date of Measurement	Recent GWE (leet ansl)	Recent GWE Compared to Baseline (leet)	Trigger Level ⁴ (feet)	Recent GWE Compared to Trigger Level (leet)	Recent GWE Above Max DD ² (feet)
RV-80	HR 2A	3240.92	02/17/16	3230.66	-10.26	15.3	5.04	6.24
RV-90	Coso Jct Ranch	3230.65	02/17/16	3228.00	-2.65	9.30	6.65	6.65
RV-100	Coso Jct Store #1	3227.59	02/17/16	3224.31	-3.29	8.30	5.02	5.12
RV-120	Red Hill Well	3200.66	02/17/16	3200.29	-0.37	3.00	2.63	3.43
RV-130	G-36	3198.35	02/17/16	3197.72	-0.63	2.20	1.57	2.67
RV-140	Lego	3199.21	02/17/16	3198.78	-0.43	0.70	0.27	1.97
RV-150	Cinder Road	3186.92	02/17/16	3186.22	-0.70	1.00	0.30	1.60
RV-160	18-28 GTH	3187.57	02/17/16	3188.03	0.36	0.70	1.06	2.45
RV-180	LLR North Well	3158.88	02/18/16	3158.52	-0.36	0.40	0.04	0.94

Max DO: Ma 27.2014 table 1 of ICI d" from Table 1 of ICWD's "June 27, 2014 Conditional Use Permit#2007-003/Coso "

SGMA and Groundwater Management • 2016 AEP Conference

Groundwater Management – Policy and Legal

T1 this slide conflicts with my slide, I think... Tania, 4/3/2016

- Unique water right quantified by the needs of the federal lands at the time the installation commenced
- McCarran Amendment: Serves as the basis for the federal government to waive its sovereign immunity to be sued in state court; requires a comprehensive adjudication of all issues among all stakeholders/ parties
- Winters doctrine & examples:
 - Agua Caliente Band of Cahuilla Indians suing purveyors in Coachella Valley
 - Edwards Air Force Base in Antelope Valley Groundwater Cases

SGMA and Groundwater Management • 2016 AEP Conference

SGMA Milestones		
	Establish Medium and High- Priority Groundwater Basins	\checkmark
	Develop Groundwater Sustainability Agencies	June 30, 2017
	Develop Groundwater Sustainability Plans for Medium and High-Priority Basins in Critical Overdraft	January 31, 2020
	SGMA and Groundwater Managemer	t • 2016 AFP Conference
	some and stoundwater managemen	Contraction Contenence

• Antelope Valley Adjudication Cases https://www.scefiling.org/cases/casehome.jsp?caseId=19

- 17 years of trial court litigation
- 9,000 docket entries
- 145 parties & 2 class actions
- Moved from judge to judge;
- Mediators for years
- 180 TAF demand, but...
- 110 TAF safe yield
- Now on appeal

Adjudication: Antelope Valley Major agricultural operations, public water suppliers; 70,000 unexercised overliers; 3000-4000 small pumpers; 100-1,000 large pumpers 900 square mile area Edwards Air Force Base – largest property owner (federal land)

